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Introduction: Security Proof by Reduction

To prove security of a scheme Σ, relate it to some hard problem Π

A breaks Σ with advantage ϵ ⇒ R breaks Π with advantage ϵ/loss
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This paper: Lower bounds on security loss against adaptive adversaries



Our Results

This paper: Lower bounds on security loss against adaptive adversaries

Consider certain multi-round games that capture several existing
constructions where the adversary queries edges of a graph:

Generalized selective decryption (GSD):
nodes = keys, edges = encryptions

TreeKEM construction of continuous group key agreement:
nodes = keys, sources = users, sinks = group keys, edges =
encryptions

GGM84 construction of a prefix-constrained PRFs:
nodes = seeds, edges = PRG evaluations

Proxy re-encryption (PRE):
nodes = keys, edges = re-encryption keys



Our Results

Application Underlying Graph Lower Bound Reduction Upper Bound

GSD

Path PN NΩ(log(N)) Oblivious NO(log(N)) [FJP15]

Binary In-Tree BN NΩ(log(N)) Oblivious NO(log(N)) [Pan07]

Tree NΩ(log(N)) Straight-line NO(log(N)) [FJP15]

Arbitrary DAG 2Ω(
√
N) Oblivious NO(N/ log(N)) [JKK+17]

TreeKEM Tree MΩ(log(log(M))) Straight-line QO(log(M)) [KPW+21]

GGM CPRF Tree nΩ(log(n)) Straight-line nO(log(n)) [FKPR14]

PRE

Path PN NΩ(log(N)) Oblivious NO(log(N)) [FKKP19]

Binary In-Tree BN NΩ(log(N)) Oblivious NO(log(N)) [FKKP19]

Arbitrary DAG 2Ω(N) Arbitrary NO(N/ log(N)) [FKKP19]

N = 2n . . . size of the graph.
GGM CPRF: n . . . input length. TreeKEM: M . . . number of users, Q . . . number of queries.

Reductions: oblivious ⊆ straight-line ⊆ arbitrary fully black-box



Our Results

Main conceptual idea:

Introduce Builder-Pebbler Game:
a two-player, multi-stage game

Pebbler’s success probability → lower bounds on security loss:

use oracle separation techniques
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Generalized Selective Decryption (GSD) [Pan07]
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encryption graph

challenge graph

Goal: Reduction proving adaptive GSD security

based on IND-CPA security of the SKE

Intuition: Reduction needs to embed IND-CPA challenge at an edge,

but can answer other uncorrupted edges real or fake

Rule: Cannot create encryptions of the IND-CPA challenge key

⇒ all edges incident on the challenge source must be fake!



Threshold Adversaries

Our (inefficient) adversary:

Corrupts all nodes outside the challenge graph, outputs 1 if any fake
edges outgoing from corrupt nodes
⇒ challenge key must be embedded in challenge graph

On the challenge graph: Interprets fake edges as pebbled

Outputs 0/1 if final pebbling configuration good/bad



Threshold Adversaries

The threshold:

Consider reversible edge pebbling:

Can place/remove a pebble on an edge iff all edges incident on its source are

pebbled.

Define good by a cut in the configuration graph:



Threshold Adversaries

The threshold:

Consider reversible edge pebbling:

Can place/remove a pebble on an edge iff all edges incident on its source are

pebbled.

Define good by a cut in the configuration graph:

Cut set . . . configurations at the border between good and bad
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Cut for Trees with Large Outdegree

Challenge graph = path of length n

Lower bound for reversible edge pebbling on a path:
Require log(n) + 1 pebbles to pebble last edge

Define cut X : pebble configuration P on the challenge path is good
iff it is reachable with log(n) pebbles

⇒ Goal of the Pebbler: Place log(n) pebbles on the challenge path, but
no pebbles outgoing from nodes outside the path.
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Lower Bound for GSD

Combinatorial upper bound → cryptographic lower bound:

Construct ideal SKE scheme

Construct (inefficient) threshold adversary for GSD that simulates the
above Builder strategy B, such that:

∀ straight-line reductions R: ∃ Pebbler P against B such that:

R has security loss ≤ Λ ⇒ P has advantage ≥ 1/Λ

Theorem (GSD on trees, informal)

Any straight-line reduction proving security of unrestricted adaptive
GSD based on the IND-CPA security of the underlying SKE scheme loses
at least a super-polynomial factor (NΩ(log(N))) in the number of users N.



Our Results

Application Underlying Graph Lower Bound Reduction Upper Bound

GSD

Path PN NΩ(log(N)) Oblivious NO(log(N)) [FJP15]

Binary In-Tree BN NΩ(log(N)) Oblivious NO(log(N)) [Pan07]

Tree NΩ(log(N)) Straight-line NO(log(N)) [FJP15]

Arbitrary DAG 2Ω(
√
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PRE

Path PN NΩ(log(N)) Oblivious NO(log(N)) [FKKP19]

Binary In-Tree BN NΩ(log(N)) Oblivious NO(log(N)) [FKKP19]

Arbitrary DAG 2Ω(N) Arbitrary NO(N/ log(N)) [FKKP19]

N = 2n . . . size of the graph.
GGM CPRF: n . . . input length. TreeKEM: M . . . number of users, Q . . . number of queries.



Continuous Group Key Agreement: TreeKEM [BBR18]

A B C D E F G H



TreeKEM: Update

Alice updates:

choose fresh keys (via hash chain, as in TreeKEM)

remove old keys

A



Lower Bound for TreeKEM

Game is quite similar to public-key GSD

Construct adversary that embeds tree structure as above
(depth log(M), M group size)

Cruicial: Relay server is not trusted!

Theorem (TreeKEM, informal)

Any straight-line reduction proving adaptive CGKA security for
TreeKEM based on the IND-CPA security of the underlying PKE scheme
loses a super-polynomial factor (MΩ(log log(M))) in the group size M.
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Application Underlying Graph Lower Bound Reduction Upper Bound

GSD

Path PN NΩ(log(N)) Oblivious NO(log(N)) [FJP15]

Binary In-Tree BN NΩ(log(N)) Oblivious NO(log(N)) [Pan07]

Tree NΩ(log(N)) Straight-line NO(log(N)) [FJP15]

Arbitrary DAG 2Ω(
√
N) Oblivious NO(N/ log(N)) [JKK+17]

TreeKEM Tree MΩ(log(log(M))) Straight-line QO(log(M)) [KPW+21]

GGM CPRF Tree nΩ(log(n)) Straight-line nO(log(n)) [FKPR14]

PRE

Path PN NΩ(log(N)) Oblivious NO(log(N)) [FKKP19]

Binary In-Tree BN NΩ(log(N)) Oblivious NO(log(N)) [FKKP19]

Arbitrary DAG 2Ω(N) Arbitrary NO(N/ log(N)) [FKKP19]

N = 2n . . . size of the graph.
GGM CPRF: n . . . input length. TreeKEM: M . . . number of users, Q . . . number of queries.



Prefix-constrained PRF: GGM84
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FGGM(k , x) = kx where k∅ = k and ∀z ∈ {0, 1}∗ : kz∥0∥kz∥1 = PRG(kz)

Adversary can query constrained keys and evaluations.



Lower Bound for GGM84
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Theorem (GGM CPRF, informal)

Any straight-line reduction proving adaptive security for the GGM
CPRF based on the security of the underlying PRG loses a
super-polynomial factor (nΩ(log(n))) in the input size n.
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Application Underlying Graph Lower Bound Reduction Upper Bound

GSD

Path PN NΩ(log(N)) Oblivious NO(log(N)) [FJP15]

Binary In-Tree BN NΩ(log(N)) Oblivious NO(log(N)) [Pan07]

Tree NΩ(log(N)) Straight-line NO(log(N)) [FJP15]

Arbitrary DAG 2Ω(
√
N) Oblivious NO(N/ log(N)) [JKK+17]

TreeKEM Tree MΩ(log(log(M))) Straight-line QO(log(M)) [KPW+21]

GGM CPRF Tree nΩ(log(n)) Straight-line nO(log(n)) [FKPR14]

PRE

Path PN NΩ(log(N)) Oblivious NO(log(N)) [FKKP19]

Binary In-Tree BN NΩ(log(N)) Oblivious NO(log(N)) [FKKP19]

Arbitrary DAG 2Ω(N) Arbitrary NO(N/ log(N)) [FKKP19]

N = 2n . . . size of the graph.
GGM CPRF: n . . . input length. TreeKEM: M . . . number of users, Q . . . number of queries.

For the other results, see https://eprint.iacr.org/2021/059!

https://eprint.iacr.org/2021/059
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Conclusion and Open Problems

Initiated study of lower bounds on loss in adaptive security for certain
multi-round games on graphs.

Can we strengthen our lower bounds to hold also for rewinding /
non-obliviousness reductions? Or can we use these techniques to
overcome our lower bounds?

PRE on complete DAGs: LB for arbitrary black-box reductions.

What are other multi-round games captured by the Builder-Pebbler
Game?

Can we use pebbling lower bounds to prove lower bounds on the loss
in adaptive security in other settings, i.e. constant-round games (eg.
ABE, Garbling)?

Yao’s garbling: Yes [KKPW21], but very different techniques required

THANK YOU FOR YOUR ATTENTION!


	Introduction and Overview of our Results
	Example: Generalized Selective Decryption (GSD)
	Combinatorial Upper Bound
	Cryptographic Lower Bounds
	Conclusion and Open Problems

