The Cost of Adaptivity in Security Games on Graphs

Chethan Kamath, Karen Klein, Krzysztof Pietrzak, Michael Walter

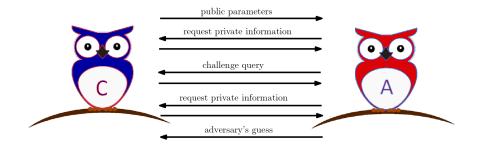
November 11, 2021

Table of Contents

1 Introduction and Overview of our Results

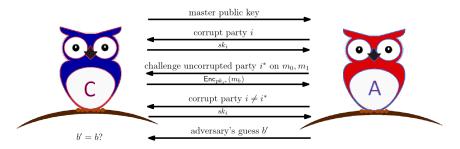
- 2 Example: Generalized Selective Decryption (GSD)
- 3 Combinatorial Upper Bound
- 4 Cryptographic Lower Bounds
- 5 Conclusion and Open Problems

Introduction: Game-based Security



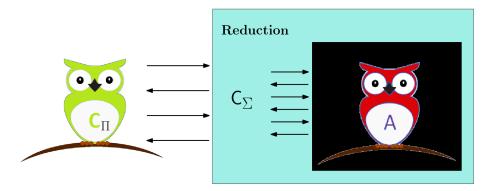
Introduction: Game-based Security

Identity-based Encryption



Introduction: Security Proof by Reduction

To prove security of a scheme Σ , relate it to some hard problem Π



A breaks Σ with advantage $\epsilon \Rightarrow R$ breaks Π with advantage $\epsilon/loss$

Introduction: Selective versus Adaptive Security

selective setting

Introduction: Selective versus Adaptive Security

adaptive setting

This paper: Lower bounds on security loss against adaptive adversaries

This paper: Lower bounds on security loss against adaptive adversaries

Consider certain multi-round games that capture several existing constructions where the adversary queries edges of a graph:

• Generalized selective decryption (GSD):

nodes = keys, edges = encryptions

• TreeKEM construction of continuous group key agreement:

nodes = keys, sources = users, sinks = group keys, edges = encryptions

• GGM84 construction of a prefix-constrained PRFs:

nodes = seeds, edges = PRG evaluations

• Proxy re-encryption (PRE):

nodes = keys, edges = re-encryption keys

Application	Underlying Graph	Lower Bound	Reduction	Upper Bound
GSD	Path <i>P</i> _N	$N^{\Omega(\log(N))}$	Oblivious	N ^{O(log(N))} [FJP15]
	Binary In-Tree B_N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [Pan07]
	Tree	$N^{\Omega(\log(N))}$	Straight-line	N ^{O(log(N))} [FJP15]
	Arbitrary DAG	$2^{\Omega(\sqrt{N})}$	Oblivious	$N^{O(N/\log(N))}$ [JKK+17]
TreeKEM	Tree	$M^{\Omega(\log(\log(M)))}$	Straight-line	<i>Q^{O(log(M))}</i> [KPW+21]
GGM CPRF	Tree	$n^{\Omega(\log(n))}$	Straight-line	$n^{O(\log(n))}$ [FKPR14]
PRE	Path <i>P</i> _N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FKKP19]
	Binary In-Tree B_N	$N^{\Omega(\log(N))}$	Oblivious	N ^{O(log(N))} [FKKP19]
	Arbitrary DAG	$2^{\Omega(N)}$	Arbitrary	$N^{O(N/\log(N))}$ [FKKP19]

 $N = 2^n \dots$ size of the graph.

GGM CPRF: $n \dots$ input length. TreeKEM: $M \dots$ number of users, $Q \dots$ number of queries.

Reductions: oblivious \subseteq straight-line \subseteq arbitrary fully black-box

Main conceptual idea:

- Introduce Builder-Pebbler Game: a two-player, multi-stage game
- Pebbler's success probability → lower bounds on security loss: use oracle separation techniques

Application	Underlying Graph	Lower Bound	Reduction	Upper Bound
CSD	Path <i>P_N</i>	$\mathcal{N}^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FJP15]
	Binary In-Tree B_N	$\mathcal{N}^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [Pan07]
	Tree	$N^{\Omega(\log(N))}$	Straight-line	N ^{O(log(N))} [FJP15]
	Arbitrary DAG	$2^{\Omega(\sqrt{N})}$	Oblivious	$N^{O(N/\log(N))}$ [JKK+17]
TreeKEM	Tree	$M^{\Omega(\log(\log(M)))}$	Straight-line	<i>Q^{O(log(M))}</i> [KPW+21]
GGM CPRF	Tree	$n^{\Omega(\log(n))}$	Straight-line	$n^{O(\log(n))}$ [FKPR14]
PRE	Path <i>P_N</i>	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FKKP19]
	Binary In-Tree B_N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FKKP19]
	Arbitrary DAG	$2^{\Omega(N)}$	Arbitrary	$N^{O(N/\log(N))}$ [FKKP19]

 $N = 2^n \dots$ size of the graph.

GGM CPRF: $n \dots$ input length. TreeKEM: $M \dots$ number of users, $Q \dots$ number of queries.

Reductions: oblivious \subseteq straight-line \subseteq arbitrary fully black-box

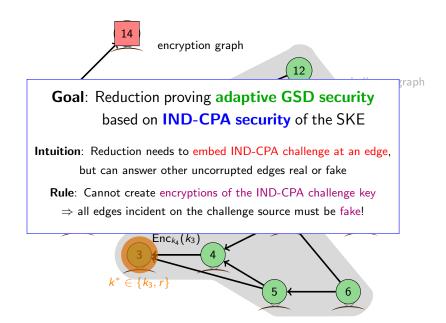
Table of Contents

Introduction and Overview of our Results

2 Example: Generalized Selective Decryption (GSD)

- 3 Combinatorial Upper Bound
- 4 Cryptographic Lower Bounds
- 5 Conclusion and Open Problems

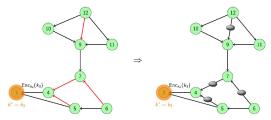
Generalized Selective Decryption (GSD) [Pan07]



Threshold Adversaries

Our (inefficient) adversary:

- Corrupts all nodes outside the challenge graph, outputs 1 if any fake edges outgoing from corrupt nodes
 - \Rightarrow challenge key must be embedded in challenge graph
- On the challenge graph: Interprets fake edges as pebbled



• Outputs 0/1 if final **pebbling configuration** good/bad

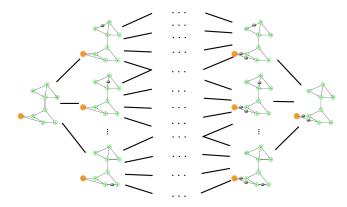
Threshold Adversaries

The threshold:

• Consider reversible edge pebbling:

Can place/remove a pebble on an edge iff all edges incident on its source are pebbled.

• Define **good** by a cut in the configuration graph:



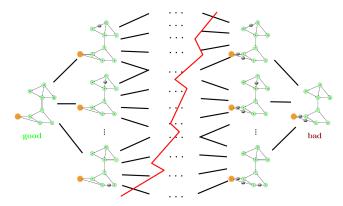
Threshold Adversaries

The threshold:

• Consider reversible edge pebbling:

Can place/remove a pebble on an edge iff all edges incident on its source are pebbled.

• Define **good** by a cut in the configuration graph:



Cut set ... configurations at the border between good and bad

Table of Contents

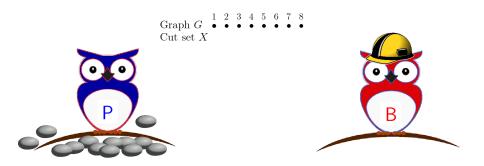
Introduction and Overview of our Results

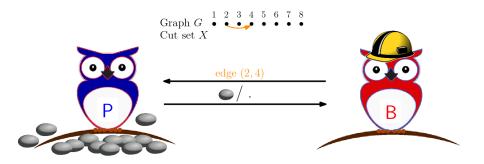
2 Example: Generalized Selective Decryption (GSD)

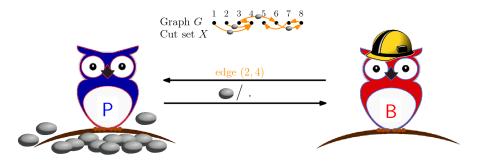
3 Combinatorial Upper Bound

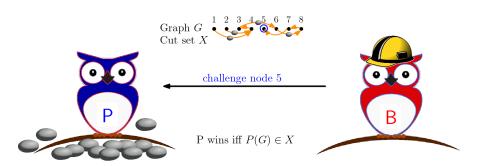
4 Cryptographic Lower Bounds

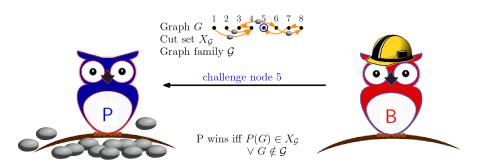
5 Conclusion and Open Problems

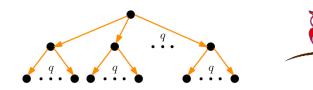




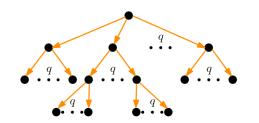


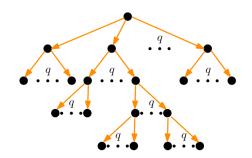


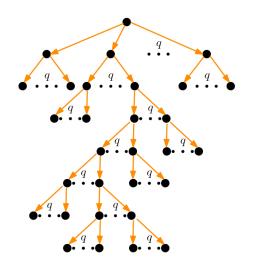


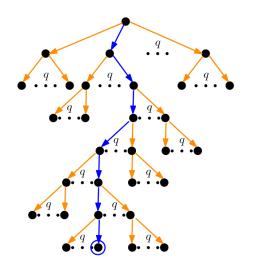


B

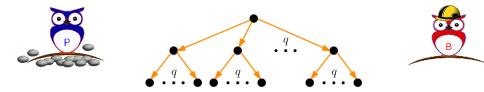


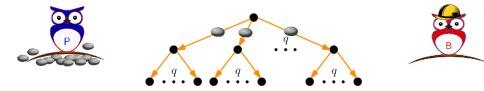


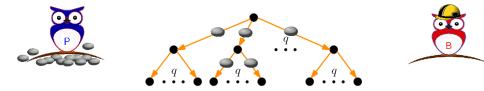


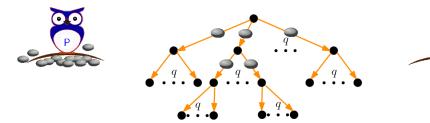


- Challenge graph = path of length n
- Lower bound for reversible edge pebbling on a path: Require log(n) + 1 pebbles to pebble last edge
- Define **cut** X: pebble configuration P on the challenge path is good iff it is reachable with log(n) pebbles
- \Rightarrow **Goal of the Pebbler**: Place log(*n*) pebbles on the challenge path, but *no* pebbles outgoing from nodes outside the path.

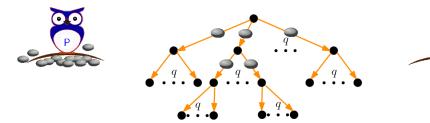




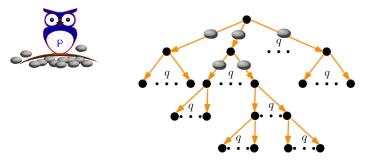


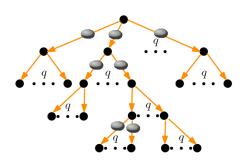


B



B







Builder Strategy for Trees

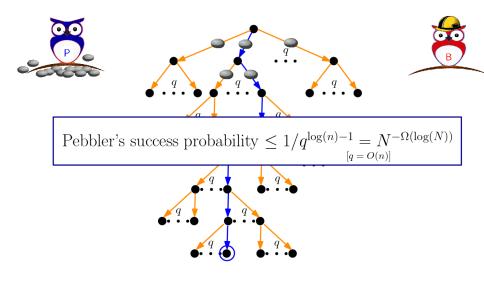


Table of Contents

Introduction and Overview of our Results

2 Example: Generalized Selective Decryption (GSD)

3 Combinatorial Upper Bound

4 Cryptographic Lower Bounds

5 Conclusion and Open Problems

Lower Bound for GSD

Combinatorial upper bound \rightarrow cryptographic lower bound:

- Construct ideal SKE scheme
- Construct (inefficient) threshold adversary for GSD that simulates the above Builder strategy B, such that:

 \forall straight-line reductions R: \exists Pebbler P against B such that:

R has security loss $\leq \Lambda \quad \Rightarrow \quad$ P has advantage $\geq 1/\Lambda$

Theorem (GSD on trees, informal)

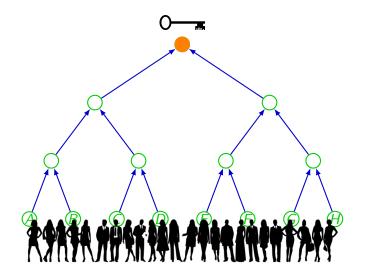
Any straight-line reduction proving security of unrestricted adaptive **GSD** based on the IND-CPA security of the underlying SKE scheme loses at least a super-polynomial factor $(N^{\Omega(\log(N))})$ in the number of users N.

Application	Underlying Graph	Lower Bound	Reduction	Upper Bound
	Path <i>P_N</i>	$N^{\Omega(\log(N))}$	Oblivious	N ^{O(log(N))} [FJP15]
GSD	Binary In-Tree B_N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [Pan07]
	Tree	$N^{\Omega(\log(N))}$	Straight-line	N ^{O(log(N))} [FJP15]
	Arbitrary DAG	$2^{\Omega(\sqrt{N})}$	Oblivious	$N^{O(N/\log(N))}$ [JKK+17]
TreeKEM	Tree	$M^{\Omega(\log(\log(M)))}$	Straight-line	$Q^{O(\log(M))}$ [KPW+21]
GGM CPRF	Tree	$n^{\Omega(\log(n))}$	Straight-line	$n^{O(\log(n))}$ [FKPR14]
PRE	Path <i>P_N</i>	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FKKP19]
	Binary In-Tree B_N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FKKP19]
	Arbitrary DAG	$2^{\Omega(N)}$	Arbitrary	$N^{O(N/\log(N))}$ [FKKP19]

 $N = 2^n \dots$ size of the graph.

GGM CPRF: $n \dots$ input length. TreeKEM: $M \dots$ number of users, $Q \dots$ number of queries.

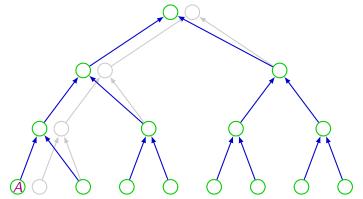
Continuous Group Key Agreement: TreeKEM [BBR18]



TreeKEM: Update

Alice updates:

- choose fresh keys (via hash chain, as in TreeKEM)
- remove old keys



- Game is quite similar to public-key GSD
- Construct adversary that embeds tree structure as above (depth log(M), M group size)
 Cruicial: Relay server is not trusted!

Theorem (TreeKEM, informal)

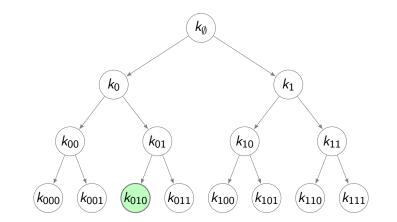
Any straight-line reduction proving adaptive CGKA security for TreeKEM based on the IND-CPA security of the underlying PKE scheme loses a super-polynomial factor $(M^{\Omega(\log \log(M))})$ in the group size M.

Application	Underlying Graph	Lower Bound	Reduction	Upper Bound
	Path <i>P_N</i>	$N^{\Omega(\log(N))}$	Oblivious	N ^{O(log(N))} [FJP15]
GSD	Binary In-Tree B_N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [Pan07]
	Tree	$N^{\Omega(\log(N))}$	Straight-line	N ^{O(log(N))} [FJP15]
	Arbitrary DAG	$2^{\Omega(\sqrt{N})}$	Oblivious	$N^{O(N/\log(N))}$ [JKK+17]
TreeKEM	Tree	$M^{\Omega(\log(\log(M)))}$	Straight-line	$Q^{O(\log(M))}$ [KPW+21]
GGM CPRF	Tree	$n^{\Omega(\log(n))}$	Straight-line	$n^{O(\log(n))}$ [FKPR14]
PRE	Path <i>P_N</i>	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FKKP19]
	Binary In-Tree B_N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FKKP19]
	Arbitrary DAG	$2^{\Omega(N)}$	Arbitrary	$N^{O(N/\log(N))}$ [FKKP19]

 $N = 2^n \dots$ size of the graph.

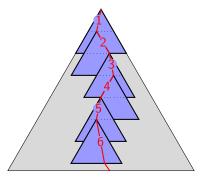
GGM CPRF: $n \dots$ input length. TreeKEM: $M \dots$ number of users, $Q \dots$ number of queries.

Prefix-constrained PRF: GGM84



 $F_{GGM}(k, x) = k_x$ where $k_{\emptyset} = k$ and $\forall z \in \{0, 1\}^* : k_{z\parallel 0} \parallel k_{z\parallel 1} = PRG(k_z)$ Adversary can query constrained keys and evaluations.

Lower Bound for GGM84



Theorem (GGM CPRF, informal)

Any straight-line reduction proving adaptive security for the GGM CPRF based on the security of the underlying PRG loses a super-polynomial factor $(n^{\Omega(\log(n))})$ in the input size n.

Our Results

Application	Underlying Graph	Lower Bound	Reduction	Upper Bound
	Path P _N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FJP15]
GSD	Binary In-Tree B_N	$\mathcal{N}^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [Pan07]
	Tree	$\mathcal{N}^{\Omega(\log(N))}$	Straight-line	N ^{O(log(N))} [FJP15]
	Arbitrary DAG	$2^{\Omega(\sqrt{N})}$	Oblivious	$N^{O(N/\log(N))}$ [JKK+17]
TreeKEM	Tree	$M^{\Omega(\log(\log(M)))}$	Straight-line	$Q^{O(\log(M))}$ [KPW+21]
GGM CPRF	Tree	$n^{\Omega(\log(n))}$	Straight-line	$n^{O(\log(n))}$ [FKPR14]
PRE	Path P _N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FKKP19]
	Binary In-Tree B_N	$N^{\Omega(\log(N))}$	Oblivious	$N^{O(\log(N))}$ [FKKP19]
	Arbitrary DAG	2 ^{Ω(N)}	Arbitrary	$N^{O(N/\log(N))}$ [FKKP19]

 $N = 2^n \dots$ size of the graph.

GGM CPRF: $n \dots$ input length. TreeKEM: $M \dots$ number of users, $Q \dots$ number of queries.

For the other results, see https://eprint.iacr.org/2021/059!

Table of Contents

Introduction and Overview of our Results

2 Example: Generalized Selective Decryption (GSD)

3 Combinatorial Upper Bound

④ Cryptographic Lower Bounds

Conclusion and Open Problems

Initiated study of **lower bounds** on loss in **adaptive security** for certain **multi-round** games on graphs.

• Can we strengthen our lower bounds to hold also for rewinding / non-obliviousness reductions? Or can we use these techniques to overcome our lower bounds?

PRE on complete DAGs: LB for arbitrary black-box reductions.

- What are other multi-round games captured by the Builder-Pebbler Game?
- Can we use pebbling lower bounds to prove lower bounds on the loss in adaptive security in other settings, i.e. constant-round games (eg. ABE, Garbling)?

Yao's garbling: Yes [KKPW21], but very different techniques required

THANK YOU FOR YOUR ATTENTION!